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ABSTRACT 

In this study, an optimization-based approach for 
simulating the lifting motion of a three dimensional digital 
human model is presented. Lifting motion is generated 
by minimizing a performance measure subjected to 
basic physical and kinematical constraints. Two 
performance measures are investigated: one is the 
dynamic effort; the other is the compression and shear 
forces on the lumbar joint. The lifting strategies are 
predicted with different performance measures. The joint 
strength (torque limit) and the compression and shear 
force on lumbar joint are also addressed in this study to 
avoid injury during lifting motion. 

INTRODUCTION 

The lifting biomechanics of humans is an important issue 
in many industrial applications. In human lifting, many 
strategies may be chosen to suit the task, e.g., weight, 
position, and shape of an object. Two major solutions 
have been referred in the literature (Chaffin and 
Andersson, 1991): the squat lift and the back lift. 
However, most biomechanists quantify the lifting 
strategy purely on kinematics or several parameters in 
the model. The whole-body dynamic lifting motion has 
not been fully investigated, especially the effects of the 
shear and compression forces on lumbar vertebra, which 
in many cases results back pain and injury (Pope and 
Novotny, 1993). 

Kinematic lifting simulation was widely conducted in the 
literature (Matsunaga et al., 2004; Zhang et al., 2000). 
The basic idea was to quantify the lifting strategy to 
certain indexes. However, the whole-body dynamic lifting 
motion was not fully considered in these approaches. 
The use of dynamic simulation models in investigating 
the lifting task, has recently evolved as a valuable 
technique that provides insight into the analysis of lifting 
motion. Huang et al. (2005) developed a multibody 
dynamics model to generate optimal trajectories of 

human lifting movements based on optimal control. The 
muscle activation parameters were treated as inputs 
instead of joint torques. The optimal motion was 
generated to minimize the loading of specific joints such 
as an ankle, or a knee during the lifting motion and 
subject to space-time constraints. Arisumi et al. (2007) 
studied the dynamic lifting motion of humanoid robots 
which considered the instantaneous transferred load to 
the object as an impulsive force.  

In the present work, an optimization-based predictive 
dynamics formulation is developed to predict natural 
lifting motion. A program based on a sequential 
quadratic programming approach is used to solve the 
nonlinear optimization problem. Two performance 
measures are investigated: one is the dynamic effort that 
is represented as the time integral of the squares of all 
the joint torques; the other is the compression and shear 
forces on the lumbar joint. The dynamic stability is 
achieved by satisfying the zero moment point (ZMP) 
constraint throughout the lifting motion. In addition to 
predict the natural motion, the effects of joint strength 
(torque limit) and the compression and shear force on 
the lumbar joint are also addressed in the formulation to 
avoid injury during the lifting process.  

SPATIAL HUMAN SKELETAL MODEL  

The kinematics of the spatial human skeletal model is 
based on the Denavit-Hartenberg method (Denavit and 
Hartenberg, 1955). 

55-DOF WHOLE-BODY MODEL  

A spatial digital human skeletal model with 55 DOFs, as 
shown in Figure 1, is considered in this work. The model 
consists of six physical branches and one virtual branch. 
The physical branches include the right leg, the left leg, 
the spine, the right arm, the left arm, and the head. In 
these branches, the right leg, the left leg, and the spine 
start from the pelvis, while the right arm, left arm, and 
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head start from the ending joint of the spine. The virtual 
branch contains six global DOFs, including three global 
translations and three global rotations that move the 
model from the origin (o-xyz) to the current pelvic 
position. 

 

Figure 1. The digital human model based on DH method 

DYNAMICS MODEL 

RECURSIVE LAGRANGIAN FORMULATIONS 

Recursive Lagrangian equations of motion are adopted 
in this study because of their well-known computational 
efficiency. The whole-body dynamics are considered in 
the formulation as well as ground reaction forces. The 
recursive formulation includes two parts: forward 
kinematics and backward dynamics. Forward kinematics 
start from the root joint and propagate the recursive 
position, velocity, and acceleration matrixes based on 
the link transformation matrix and the kinematics state 
variables for each joint.  

Based on forward recursive kinematics, the backward 
dynamics transfer the inertia and Coriolis forces, gravity, 
and external forces backward to the root joint. In 
addition, the gradients of the force for the spatial human 
mechanical system with respect to the state variables 
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 (i = 1 to n; k = 1 to n) can be evaluated 

in a recursive way using the recursive Lagrangian 
formulations (Xiang et al., 2008).  

GROUND REACTION FORCES 

The ground reaction forces (GRF) are considered in the 
motion and evaluated from the global equilibrium. A two- 

step algorithm is used to calculate GRF as depicted in 
the following flowchart.  

 (a) (b) 

Input 

, ,q q q& && and GRF = 0 

Start 

Obtain the resultant global 
forces:

1z
τ , 

2zτ , 
3zτ  

moments:
4zτ , 

5zτ ,
6zτ  

Obtain GRF from global equilibrium 
GRFM , GRFF , o

GRFr  

and apply them at ZMP 

Obtain real joint torques 
Global Force: 0 

Global Moment: 0 

Calculate τ  from EOM 

End 

Calculate τ  from EOM again 

 

Figure 2. Flowchart of two-step algorithm to calculate 
GRF (a) without GRF, and (b) with GRF 

The basic idea is to retrieve GRF from equilibrium 
between the passive GRF and the resultant active forces 
(inertial force, gravity, and external loads) in equations of 
motion (Xiang et al., 2007). 

LIFTING MODEL 

LIFTING TASK 

In this work, the lifting task is defined as moving a box 
from an initial location to a final location. Figure 3 depicts 
the input parameters for the proposed formulation. In this 
regard, h1 is the initial height of the box measured from 
the ground, d1 is the initial distance measured from the 
foot location to the center of the box; h2 is the final height 
measured from the ground, d2 is the final distance, and w 
is the weight of the box. The initial and final postures and 
dynamic lifting trajectory are solved from a nonlinear 
optimization problem. In addition, the mechanical system 
is at rest at the initial and final times. 

 
Figure 3. Input parameters for lifting task 

 
NONLINEAR PROGRAMMING 



The lifting task is formulated as a general nonlinear 
programming problem. To find the optimal lifting 
trajectories q, a human performance measure is 
minimized and subject to physical constraints as follows: 
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where h is the equality constraint and g is the inequality 
constraint.  

OPTIMIZATION FORMULATION 

DESIGN VARIABLES 

In the current formulation, the design variables are the 
joint profiles ( )iq t  for the lifting motion. The torque 
profiles are calculated from joint profiles using the 
recursive Lagrangian dynamics equations. 

OBJECTIVE FUNCTION 

Two objective functions ( )f q  are investigated in this 

study: one is the dynamic effort, the integral of the 
torque squares of all joints over time (Eqn. 2); the other 
is the integral of squares of the compression and shear 
forces on the lumbar joint (Eqn. 3). 
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where iτ  is active joint torque for the ith joint. 
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where Fx is lateral shear force on the lumbar joint, Fz is 
forward shear force on the lumbar joint, and Fy is 
compression force on the lumbar joint. 

CONSTRAINTS 

A general constraint library is developed in Virtual 
Soldier Research Program (VSRTM) predictive dynamics 
environment. The advantage of using a constraint library 
is that some constraints can be shared for various tasks. 
For the lifting task, joint limits, torque limits, ground 
penetration, foot locations, and ZMP stability, are 
common constraints shared with walking, running, stair 
climbing and so on. The hand orientation, vision, 
collision avoidance, and initial and final box locations are 
new constraints for the lifting problem. 

In the vision constraint (Eqn. 4), the vision vector is 
aligned towards the box center. In the hand orientation 
constraint (Eqn. 5), the two hands are positioned normal 

to the box to facilitate the appropriate grasping postures. 
The collision avoidance constraint (Eqn. 6) is used to 
keep the box from penetrating the body. These 
constraints are illustrated in Figure 4. 
 

 
Figure 4. Hand orientation, vision, and collision 

avoidance constraints 
 

Vision Constraint 

The vision constraint makes the eye vector align with the 
vision vector. 
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0⋅ =eye visionr r  (4) 

Hand Orientation 

The hand normal vector aligns with the box. 
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0⋅ =hand boxr r  (5) 

Collision Avoidance 

Santos is filled with spheres on the ankle, knee, hip, 
shank, thigh, chest, and neck with various radiuses to 
represent body thickness. The distance between box 
edge and sphere center is measured to impose collision 
avoidance. 
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NUMERICAL RESULTS 

For the optimization problem, the entire time domain is 
discretized by B-spline curves. The joint angles are 
represented by the discretized control points P. Hence, 
the continuous optimization problem is transformed into 
nonlinear programming optimization (NLP). A large-scale 
sequential quadratic programming (SQP) approach in 
SNOPT (Gill et al., 2002) is used to solve this problem. 

Four control points are used for each DOF and thus we 
have 4×55 = 225 design variables and 420 nonlinear 
constraints. Each case requires about 200 CPU seconds 
on a Pentium(R) 4 3.46 GHz computer. 

MINIMIZING DYNAMIC EFFORT 

In this section, the first objective function, the dynamic 
effort, will be introduced. In this formulation, the foot 
locations and time duration are specified for a lifting task. 
Given the box initial location (d1=0.4 m, h1=0.4 m), final 
location (d2=1.0 m, h2=0.3 m), and weight (w=10 lbs), 
the dynamic lifting motion is predicted to minimize the 
performance measure, dynamic effort, and subject to 
physical constraints. In this case, the torque limit on 
lumbar joint is considered 100 Nm. Figure 5 shows the 
resulting optimal lifting motion. As expected, correct 
bending of the knee and spine occur to generate the 
optimal lifting motion. This is a typical back lift which is 
successfully predicted by the current formulation.  

 

Figure 5. Sequential snapshots of Santos moving a 10 lb 
box from a lower shelf to a higher shelf 

To study cause-and-effect, the torque limit on the lumbar 
joint is reduced from the previous 100 Nm to the current 
50 Nm. The same lifting task is optimized with the 
reduced torque limit, and the optimal lifting motion is 
obtained as follows: 

 

Figure 6. Sequential snapshots of Santos moving a 10 lb 
box from a lower shelf to a higher shelf with reduced 

lumbar torque limit 

In the lifting process, the spine remains upright to reduce 
the lumbar torque and a squat lift strategy is adopted 
with the reduced torque limits on the lumbar joint. In 
addition, the spine bending torque for the squat lift and 
back lift are compared in Figure 7. It is evident that the 
back lift results in a larger torque value on the lumbar 
joint.  
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Figure 7. Lumbar torque profile for squat lift and back lift 

MINIMIZING LUMBAR FORCES 

In this section, the second objective function, the lumbar 
forces, is minimized in the lifting motion. Using the same 
input parameters as in the previous section, the lifting 
motion is optimized to minimize lumbar shear forces and 
compression force. 

Case 1: Minimizing lumbar shear force 

The optimal lifting motion of minimizing the lumbar shear 
forces is depicted in Figure 8. 



 

Figure 8. Sequential snapshots of Santos moving a 10 lb 
box from a lower shelf to a higher shelf by minimizing 

lumbar shear forces 

The compression and shear forces on the lumbar joint 
are plotted in Figure 9. 
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Figure 9. Lumbar forces for case 1 

Minimizing shear forces results in a very symmetric 
lifting motion as shown in Figure 8. The maximum 
forward shear force is -48.3 N, the lateral shear force is 
7.56 N, and the compression force is 453.4 N. This 
motion indeed gives smaller shear forces, but results in 
large compression force. 

Case 2: Minimizing lumbar compression force 

The optimal lifting motion of minimizing the lumbar 
compression force is shown in Figure 10. 

 

Figure 10. Sequential snapshots of Santos moving a 10 
lb box from a lower shelf to a higher shelf by minimizing 

lumbar compression force 

It is interesting to note that Santos chooses a smart 
strategy to lift the box to minimize lumbar compression. 
Santos first uses a back lift, then bends the knees and 

raises the hands to move the box to the final location. 
The lumbar compression and shear forces are illustrated 
in Figure 11. 
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Figure 11. Lumbar forces for case 2 

The maximum forward shear force is 128.9 N, the lateral 
shear force is -137.4 N, and the compression force is 
435.8 N. It can be seen that minimizing lumbar 
compression results in larger shear forces, but relatively 
smaller compression force. 

CONCLUSION 

In this study, lifting motion prediction was presented and 
some insights on lifting strategy were analyzed. The 
motion planning was formulated as a large-scale 
nonlinear programming problem. Joint profiles were 
discretized using cubic B-splines, and the corresponding 
control points were treated as unknowns. Two objective 
functions were used in the lifting formulation: dynamic 
effort and lumbar forces. Based on the simulation data, 
the results have demonstrated the ability of the proposed 
methodology to choose a realistic human lifting strategy 
with different objective functions and constraints. The 
effect of lumbar torque limit on lifting motion was studied, 
and the back lift and squat lift were predicted based on 
the torque limit. Kinetic data such as joint torque and 
lumbar forces were also analyzed. The dynamic lifting 
motion prediction has a wide variety of applications for 
biomechanics, ergonomics and human pathology 
analyses. It is also a robust prototype design tool, e.g., it 
can be used to study a specific joint injury problem by 
reducing the corresponding torque limit. Moreover, the 
lifting strategies can be predicted with different 
performance measures. Finally, the motion-capture- 
based validation of the current formulation is ongoing, 
and the simulation results may be further improved with 
validation feedback. 
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